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This paper  describes the application of Snyman's  dynamic minimisation 
method to a fitted potential surface of H3. Comparisons are made with 
conventional algorithms. A method is described to extend Snyman's  method 
so that it will find only a particular kind of stationary point. It is emphasized 
that this method enables saddle points to be found without having to resort 
to approaches based on trial and error. 
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1. Introduction 

A fundamental  technique used in the theoretical study of chemical reactions is 
that of searching for stationary points on a potential energy surface. The stationary 
points which are minima correspond to stable structures of  the system and those 
for which the Hessian has one and only one negative eigenvalue correspond to 
transition states. Standard methods of optimisation theory have to be adapted 
to create algorithms which will search for such saddle points, since most methods 
use theory which is based on being able to approximate the surface locally by a 
quadratic form and find the required saddle point only when started in a region 
in which the Hessian has only one negative eigenvalue. The adapted theory has 
to enable a reasonable starting region to be found and trial and error techniques 
have to be adopted [1-7]. In this paper  the performance of a prototype minimisa- 
tion algorithm based on the solution of an associated dynamic system [8] is 
studied in connection with a fitted adiabatic surface of H3 [9], and an adaptation 
is described which will make the algorithm converge only to a desired kind of 
saddle point. 
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2. Method 

Snyman's minimisation algorithm is a novel method for performing an uncon- 
strained minimisation of  a function of many variables for which first derivatives 
are known explicitly [8]. It does not require the use of second derivatives and it 
is not even necessary to calculate the value of the function at all during the 
calculation. 

The algorithm is different conceptually from standard methods. It treats the 
function to be minimised, f ( x ) ,  as the potential energy of a particle of unit mass 
moving in a conservative force field. Thus the negatives of the first spatial 
derivatives give the forces acting on the particle. In each iteration the classical 
equations of  motion for the velocity and position of the particle are solved using 
Euler backward and forward approximate integration respectively. 

~k+l  = Ok - gg+lA T (la) 

Xk+ 1 -=Xk+vkAT (lb) 

where AT is a suitably chosen time step, gi is the vector of first derivatives 
( = - f o r c e  vector), and vi and xi are the velocity and position of the particle at 
the start of  the ith time step (minimisation iteration) respectively. 
Given a time step, an initial position and initial velocity, enables one to find a 
unique trajectory in each iteration. (Note that as far as the algorithm is concerned, 
A T is merely a parameter. It does not have any units. It is thought of as a time 
step only in a physical interpretation.) On this trajectory the total energy (potential 
plus kinetic) is conserved. If the particle's speed increases as it moves along this 
path, then its potential energy (the function f ( x ) )  must decrease. Therefore, if it 
starts from rest it must follow a path on which its potential energy is non- 
increasing. This means that unless the initial position is a minimum, the method 
can be sure to find a path along whichf (x)  decreases. The basic Snyman algorithm 
may be summarized: 
Consider Ilvk+lll, k--  0, 1, 2 , . . . .  
Whenever IIvk§ < flvkl[ reset to 0 and repeat step k. 

The performance of the routine depends on the choice of the size of  the time 
step A T. A small value for A T means that the numerical approximation is good 
and an accurate solution of the equations of motion (la,  b) is found. Choosing 
A T too small can result in a slow calculation, and choosing A T too large, apart 
from obtaining an inaccurate path, can result in a minimum being overshot 
repeatedly. Snyman discusses the practical implications of the method giving 
heuristic procedures [8] which make it more efficient, gives an automatic time 
step routine [10], and extends the algorithm for global minimisation [11] using 
Bayesian statistics. The time step is allowed to increase at a preset "variable 
compound interest" rate as long as the change in modulus of x does not exceed 
a certain value, in which case AT is held fixed and the maximum allowable 
change in x is taken. The current value of AT is halved and the algorithm is 
re-started half-way between the present and previous positions, at a velocity equal 
to (1)d-Void)/4, if the scalar product of successive first derivative vectors g is 
negative in three consecutive iterations. This ensures that the time step may 
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become small enough near to a stationary point, which is necessary for non-erratic 
behaviour of the particle. 

As the aim of the calculation is to minimise f ( x )  rather than to solve the equations 
of  motion as accurately as possible, Snyman shows how the approximate solution 
of the equations of  motion using (la,  b) leads to a modified energy conserving 
relationship and changes the basic algorithm given above accordingly, but asserts 
that the algorithm can never converge to a stationary point which is not a proper 
local minimum [8]. 

These heuristic procedures increase the efficiency of the algorithm and the 
automatic time step method can make the method more efficient for a steep 
function and sometimes it can cause the program to converge accidentally. 

3. Application to H 3 fitted surface 

To find out how the Snyman algorithm would perform on a reaction surface, it 
was applied to the H3 fitted adiabatic surface of Hall and Okada [9] which is 
given very conveniently in the form, 

r + s + t = N  

f ( x )  = f ( X ,  Y, Z )  = ~, a~,tX'YSZ ' 
r,s,t=O 

where X = exp ( -ax l ) ,  Y = exp (-bx2),  Z = exp (-cx3) and a = b = e and a,,, = 
asrt " =  arts, and xi, x2 and x3 are the distances between the three Hydrogen atoms 
(they are the components of  x) and N is the order of the fit. 

It is straightforward to calculate the first derivatives of  this function and formulae 
for f ( x )  and these first derivatives were inserted into Snyman's algorithm for 
analysis. The time step AT was set initially to 0.5 and the automatic time step 
method [10] was used so that AT could become as large as possible during the 
calculation. The maximum allowable change in the modulus of x during an 
iteration was set to 1, and the calculation was assumed to have converged when 
the modulus of  the vector of  first derivitives g had been reduced to 10 -8. 

The algorithm found a local minimum, which corresponds to a linear configur- 
ation, from a variety of  starting points. It should be noted that this is not an 
unconstrained minimisation because xl, x2 and x3 must satisfy the triangle 
inequality, so that when x3 = Xl + x2, i.e. a linear configuration, a degree of freedom 
is lost and the derivatives with respect to x3 are equal to linear combinations of  
derivatives with respect to x~ and x2, e.g. 

Of l [ ~ ~ 
Ox3 2 kOx~ Ox2.1 

and the Hessian has a zero eigenvalue. Therefore the algorithm is given values 
for the first derivative with respect to x3 which show a discontinuity at the line 
x3 = x~ + x2. Similarly it experiences a discontinuity in derivatives with respect to 
xl on the line Xl =x2+x3  and with respect to x2 on the line Xz=X3+Xl. 



88 c.M. Smith 

As will be discussed later, although the method is usually guaranteed not to 
converge to a saddle point, it did find saddle point s corresponding to isosceles 
triangle arrangements if it was started from such a configuration. However, if 
started close to such a saddle point from a near isosceles arrangement, symmetry 
being broken, it found a path which moved the particle away to a proper  local 
minimum. Similarly when started from an equilateral triangle configuration it 
found the H 3 saddle point. In both cases, if the algorithm was allowed to continue, 
so that the first derivatives could become very small (i.e. around 10 -12 ) it was 
found that rounding errors could cause the isosceles or equilateral symmetry to 
be broken and slowly a path was found which lead to a proper minimum. 

4. Adaptation to find saddle points 

The progress of the minimisation strategy may be monitored by observing the 
first derivatives of f ( x )  along the principal curvatures at the current iteration 
position. Denote these by the column vector gv. (The components of  gp may be 
thought of as minus the principal forces, i.e. the forces acting along the principal 
curvatures of the surface.) If  the orthogonal transformation which diagonalises 
the Hessian matrix is represented by the matrix U, i.e. 

U T ' H  �9 U = A  

where A is a diagonal matrix then, 

gp= U-r. g 

where the superscript T of a matrix or a vector denotes its transpose. When an 
iteration results i n f ( x )  being reduced, the velocity increases, hence the dominant 
elements of gp do not change sign, see equations (la,  b). If the Hessian is positive 
definite, (all eigenvalues are positive) then the algorithm is certain to find a 
direction which minimises the function and reduces the moduli of all the elements 
of gp so that a point closer to a minimum is found. If the Hessian is not positive 
definite, i.e. it has n negative eigenvalues, then even if the current point is close 
to a saddle point the algorithm eventually will find a path on which at least one 
of the n elements of gp corresponding to a negative eigenvalue will increase as 
f ( x )  decreases. However, if one or more of these n elements are zero identically, 
for a continuous set of points, the algorithm behaves in a way that this subset is 
not used in the search for a minimum. The method was found never to converge 
to a saddle point provided; a) that the convergence parameter, which determines 
how small the first derivatives must be to stop the minimisation, is set low enough 
and b) such a continuous set of points is not encountered. It is for reason b) that 
an isosceles triangle saddle point was identified as a minimum when the starting 
point also had an isosceles arrangement. In this case the symmetry of the isosceles 
triangle ensured that the Hessian's lowest eigenvalue had the eigenvector 
(0, 1, -1 )  r (in this paper, vectors are represented by column matrices and for 
this example positions 2 and 3 correspond to the equal sides of the triangle) and 
because the relevant two first derivatives were equal (also due to this symmetry), 
the component of gp which corresponds to this lowest eigenvalue was zero for 
all such configurations. Except for unexpected effects due to rounding errors, 
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symmetry constrained the algorithm to perform the minimisation within the set 
of isosceles triangle configurations and in that sense it did find a proper minimum. 

This behaviour near stationary points suggests a way in which the algorithm may 
be adapted so that it will converge to a saddle point-and not to any other kind 
of stationary point. This is done by applying a transformation to f (x)  such that 
the image surface f ' (x) has a minimum where f (x)  has a saddle point (and a 
saddle point where f (x)  has a minimum). Let (N, n) saddle point denote a saddle 
point on an N-dimensional surface which has n negative principal curvatures. 
Consider an (N, n) saddle point on a surfacef(x).  This is always a local minimum 
on a related surface if(x) which is defined as having its principal curvatures 
corresponding to its N - n  highest eigenvalues equal to those of f (x)  for all x, 
and the remaining n principal curvatures equal to minus those o f f ( x )  for all x. 
Hence a saddle point o n f ( x )  may be found by minimising f ' (x) .  Such a procedure 
may be applied very easily to Snyman's algorithm and the first spatial derivatives 
o f f ' ( x )  may be found as shown in the flowchart below. This is not in the spirit 

The procedure for obtaining first derivatives for the image surface 

Diagonalise the Hessian off(x) at the current point 

H . U = A . U  

Find principal gradients 

Transform g to gp by multiplying by the transpose of U 

gp=Ur.g 

"Reflect" the lowest n eigenvalues 

Negate the n components of gp, gpi, which correspond 
to the n lowest eigenvalues of H, and call this vector 

g'~ 

Transform back 

Transform g~ to g' by multiplying by U 

g'=U'g; 
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of the Snyman method, however, because the Hessian needs to be calculated 
exactly to define f ' (x) ,  but it does give a method which will converge only to the 
required kind of saddle point and may be started abitrarily near a minimum point 
as long as the convergence parameter is set low enough. 

This new method for finding saddle points does not suffer from the inherent 
problem in other methods which is due to the fact that only one orthogonal 
trajectory passes through a saddle point. Because the saddle point to be found 
is a minimum on the image surface, there are infinitely many orthogonal trajec- 
tories of that surface which end at it. It should be noted that the gradient extremal 
method [12, 13] also avoids the above problem very effectively. However, effort 
needs to be made to "walk along" the gradient extremal, which leads from a 
given minimum to a given saddle point, rather closely and this path may not 
always be a very direct route. 

It is a non-trivial exercise to imagine the shape of the image surface described 
above above for a given surface f ( x ) .  Generally, negating a principal curvature 
at a point implies applying a reflection which depends on the eigenvectors of the 
Hessian at that point, f ( x )  for the H3 fitted surface has saddle points at (1.43, 
4.14, 4.14) and (3.42, 1.76, 1.76) which have one negative principal curvature, 
and a saddle point at (2.11, 2.11, 2.11) which has two. Therefore f ( x )  has minima 
at (1.43, 4.14, 4.14) and (3.42, 1.76, 1.76) and a saddle point with one negative 
curvature at (2.11, 2.11, 2.11). Valley bottoms are transformed to cols with one 
negative curvature and vice versa. 

In the search for an (N, n) saddle point, points for which f ( x )  has n + 1 (or 
greater) equal lowest eigenvalues may be approached. As an optimisafion path 
passes near a point whose lowest n + 1 principal curvatures are equal, there is a 
degeneracy which can cause a different set of eigenvalues to be negated. In effect 
this degeneracy introduces a discontinuity in the first derivatives g' at this point 
and it can behave like a stationary point. Such a pseudo stationary point would 
always have at least one negative eigenvalue on f ' (x )  and therefore would not 
cause the program to converge, but may slow the particle down. 

It should be noted that it is only useful to implement this "reflection" technique 
to find saddle points, on a minimisation routine which; (a) can distinguish 
minimima from other stationary points and (b) does not use function values at all. 

The modified method was used to search for all the saddle points on the fitted 
H 3 surface and was seen to be very robust and always found the correct type of 
saddle point although sometimes convergence was rather slow for a bad starting 
point. However, if the initial point was very close to a (3, n*) saddle point the 
algorithm had no problem in finding a set of paths which terminated at a desired 
(3, n) saddle point (n # n*). 

To apply the method to an ab-initio potential energy surface, strictly it is necessary 
to be able to calculate exact first and second spatial derivatives for all points on 
the surface. If the algorithm were incorporated into an SCF program, these 
derivatives would have to be calculated at the end of the SCF stage, and then 
the algorithm would use them to find the first derivatives for the image surface 
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and determine the next point on the optimisation path. Therefore these derivitives 
would have to be evaluated at each point visited on the path. Such a scheme 
would be very time consuming for a large quantum mechanical system. It is 
suggested here that this new method be used together with a standard one. At 
the start of the calculation it would search for a region where the Hessian of the 
image surface is positive definite and then the standard method would be used 
to finish the calculation. An example to illustrate this for a simple system is given 
later. The starting point can be any point  on f(x) for which the first derivatives 
are non-zero (they may be very small but they must not be zero). The advantage 
gained on a complicated reaction surface, for which there is very little chemical 
insight, would be that the intrinsic ability of the algorithm, to distinguish between 
different kinds of stationary point, makes the use of trial and error methods to 
climb the hill from a minimum [ 1-7] unnecessary. It may also need fewer iterations 
than a twisty gradient extremal [12, 13]. To reduce computing costs for this 
composite algorithm it is probably sufficient to use approximate derivatives for 
part of the Snyman section if the distance between successive iterates is small 
although it is necessary to know the second derivatives at some point to know 
when to switch to the standard method. 

5. Comparison with standard methods 

Quasi-Newton minimisation routines and a non-linear simultaneous equation 
solver using Brent's method were also used to study the H3 surface to enable 
comparisons to be made with Snyman's method. These other routines are con- 
tained in the Scientific Subroutine Library II at Kyoto University. When the 
starting configuration for each run was chosen to be (1.650001, 1.65, 1.65), Brent's 
method was seen to converge to the point (2.105, 2.105, 2.105), where the value 
of f is -0.08, in 8 iterations. This point is actually a (3, 2) saddle point. The 
Quasi-Newton method, which used exact first derivatives, converged to the point 
(3.33, 1.67, 1.67) in 525 iterations. The function value at this point is -0.154 but 
it is not a stationary point for the gradients are of the order 10  -1  (in this case 
convergence meant that the function f (x )  could not be made any lower). Another 
Quasi-Newton routine, which used approximate numerical first derivatives, was 
also employed. This converged to a minimum "near oo" in 207 iterations where 
the numerical first derivatives were - 1 0  -5. Snyman's method converged to the 
straight-line minimum configuration (3.77, 5.21, 1.44) in 329 iterations where 
f=-0.173, when the convergence parameter was 10 -s. When a larger value of 
10  -7  w a s  used instead, the algorithm stopped near a saddle point at (3.42, 1.76, 
1.76) where f= -0.156. Each method was also timed for a run which printed 
only final values of the variables. These results, together with those for another 
starting point, (1.650001, 1.65, 3.33), are given in Table 1. 

6. Conclusion 

The results in Table 1 show that Snyman's routine is a robust minimisation 
method which is able to distinguish minima from other stationary points in a 
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Table 1. Final points obtained by Snyman's and standard routines from the same starting 
points on the H 3 fitted surface of Hall and Okada 

Starting from (1.650001, 1.65, 1.65) 

Method Final point Irgll f Steps CPU 
s 

Snyman (3.42, 1.76, 1.76) 10 -7  -0.156 97 0.3 
Snyman (5.21, 1.44, 3.77) 10 -8 -0.173 329 0.8 
Q-Newton (3.34, 1.67, 1.67) 10 -1 -0.154 525 0.5 
Brent (2.10, 2.10, 2.10) 10 -7  -0.083 8 0.1 

Starting from (1.650001, 1.65, 3.33) 

Method Final point Ilgll f Steps CPU 
S 

Snyman (1.76, 1.76, 3.42) 10 -5 -0.156 63 0.2 
Snyman (3.77, 1.44, 5.21) 10 -7  -0.173 241 0.6 
Q-Newton (3.98, 1.46, 5.44) 10 -1 -0.173 171 0.2 
Brent (1.76, 1.76, 3.42) 10 -7 -0.156 5 0.1 

way that s tandard methods  cannot.  Brent 's method,  as expected, converged to 
the nearest stat ionary point  as it was merely solving a set o f  non-l inear  equations,  
and converged very quickly. However  the Quas i -Newton  method,  which used 
first derivatives, seemed to find the H3 surface part icularly difficult to cope with 
and was unable to find a proper  minimum. It may  be important  to note that the 
modulus  o f  the first derivative vector in the straight line configurat ion is - 1 0  -2 
if the three variables are treated as independent .  This severe discontinuity may 
have caused Snyman 's  routine to need a large number  of  iterations, and also 
confused the Quas i -Newton  routine, whose convergence criterion depends upon  
the absolute change in x during an iteration. The fact that  Synman ' s  routine 
could converge in such circumstances whereas the Newton  routine could not, 
may  be significant in an applicat ion on a more complicated surface. 

It should be noted that this is a prototype routine and contains parameters  which 
determine its efficiency for a part icular  problem [8]. It has not  been compared  
with a minimisat ion method  which has been tuned to work well on a Quan tum 
Chemical  problem. The aim here has been to compare  the per formance  of  the 
basic new algorithm, with the basic algorithms of  s tandard methods,  on a simple 
Quan tum problem and suggest that  these results together  with the fact that  it 
may  be made  to find only saddle points,  by  using the reflection method,  mean 
that it is worth refining and using in Chemical  React ion studies. 

7. Application to model two-dimensional surfaces 

In order  to illustrate the nature of  the optimisat ion paths of  Snyman 's  method 
and their dependence  u p o n  the initial time step parameter  AT, the two two 



Application of a dynamic method of minimisation 93 

dimensional functions, on which Simons et al. [3] tested their surface walking 
method, were studied as model potential surfaces. The first was the Rosenbrook 
function, studied by Crippen and Scheraga [4] and also by Snyman [8]. It is 
given by; 

Vcs(X, y) = 100(y - x2) 2 + (1 - x) 2 

Vcs(X, y) has a minimum at the point (1, 1) and a stream bed along the line 
y = x 2. The routine was started from various points using various values for initial 
AT and was found to converge to the minimum each time. Results for an initial 
starting point of ( - 5 , - 5 )  are given in Table 2. A run was assumed to have 
converged when the modulus of the vector of first derivatives g, had been reduced 
to 10 -5. The number of minimisation steps is seen not to depend upon the initial 
time step very sensitively and the final value of the time step is approximately 
the same for each case. Most of  the minimsation run was spent on the curve 
y = x 2 and it was here that the automatic time step routine reduced and/or  kept 
the value of AT to around 0.04. Only a few iterations were needed to reach y = x z 
from the point ( - 5 , - 5 )  when the initial value of AT was 0.5 or greater. The 
paths for initial AT values of 0.05 and 50 are illustrated in Fig. la,b respectively. 

The results show that the minimisation algorithm requires a small time step of 
around 0.04 near the stream bed y = x 2 to ensure that stable minimisation paths 
can be found which do not repeatedly overshoot the minimum. When started 
with an intiial AT of 0.05 many steps were required to reach the minimum but 
each path taken was a stable solution of the equations of motion. When the initial 
time step was 50 many of the paths near y = x 2 were unstable and showed erratic 
behavior. However the latter was the most efficient minimisation. 

The second surface studied was that of Cerjan and Miller [5] and is given by; 

VcM(X, y) = (a -byZ)x 2 exp (-x2)+O.5cy 2 

In VcM(X, y) a, b and c were given the values 1, 1.2 and 1 respectively. This 
potential has a minimum at (0, 0) and saddle points at (1, 0) and ( -1 ,  0). The 
convergence parameter was set to 10 8 and minimisation runs starting from (1.34, 
-1.15) were investigated. Results for different initial time steps are given in Table 

Table 2. Values of parameters when the modulus of the first derivative 
vector of the Crippen-Scheraga function has reached 10 -5, in a minimi- 
sation run starting from the point ( - 5 , - 5 )  using Snyman's method 
with different initial time steps 

Initial AT Steps Final AT Vcx(x  ' y) 

0.005 267 0.037 10 12 
0.05 262 0.047 10 -12 

0.5 230 0.028 10 -~2 
5.0 233 0.031 10 -1'* 

50.0 179 0.031 10 -11 
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Fig. 1. a The paths on surface Vcs to the minimum (1, 1) from the starting point (-5, -5) with initial 
time step of 0.05. b Erratic paths on surface Vcs to the minimum (1, 1) from the starting point 
(-5, -5) with initial time step of 50 

3. I t  c an  be  seen  tha t  fo r  this  p o t e n t i a l  t he  f inal  t i m e  s tep fo r  e a c h  case  was  

a r o u n d  0.7, o v e r  10 t imes  tha t  u s e d  by  the  R o s e n b r o o k  func t ion .  As  be fo re ,  

s ta r t ing  w i t h  a la rge  t i m e  s tep,  m e a n t  tha t  i n a c c u r a t e  pa th s  l ead  to  t he  m i n i m u m  

w h e r e  A T  was  r e p e a t e d l y  h a l v e d  unt i l  sma l l  e n o u g h  to a l l o w  the  m e t h o d  to 

c o n v e r g e ,  a n d  a lso  a case  wi th  e r ra t ic  pa ths  was  the  m o s t  eff icient  m i n i m i s a t i o n .  

T h e  pa ths  fo r  in i t ia l  t i m e  s teps  o f  0.5 a n d  50 are  i l lus t r a t ed  in Fig. 2a, b r e spec t ive ly .  

Table 3. Values of parameters when the modulus of the first derivative 
vector of the Cerjan-Miller function has reached 10 -8, in a minimisa- 
tion run starting from the point (1.34, -1.15) using Snyman's method 
with different intial time steps 

Initial AT Steps Final AT Vc~(X, y) 

0.005 179 0.57 10 -17 

0.05 154 0.73 10 -18 
0.5 104 0.70 10 -17 

5.0 78 0.67 10 -17 

50.0 76 0.81 10 -~8 
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Fig. 2. a The paths on surface VcM to the minimum (0, 0) from the starting point (1.34, -1.15) with 
initial time step of  0.5. b Erratic paths on surface VcM to the minimum (0, 0) from the starting point 
(1.34, -1.15) with initial time step of 50 

It is interesting to note that in Fig. 2a a smooth path passes very close to the 
saddle point at (1, 0) but, although it is so close and the first derivatives on the 
path are small ( -10-2) ,  the algorithm does not converge to this point. In Fig. 2b 
all of  the erratic paths point towards the minimum and some overshoot it because 
the current time step is too large. 

The potential VcM has some characteristics which make finding its saddle points 
rather difficult. Along the x-axis OVcM/Oy is zero and along the lines x = 0 and 
x = 1 0 Vc~/Ox  is zero, therefore Vc~ is a good test case for using the "reflection" 
method described in Sect. 4 together with Snyman's program. At the points (• 
+0.94849) the Hessian of VcM has both eigenvalues equal to 0.117089. These 
points behave like saddle points on the image surface of Vc~. Saddle point runs 
starting at ( + 1 +  e, •  where e is arbitrarily small and the magnitude of a is 
less than 0.94849 converge very easily to (+ 1, 0), but if the modulus of  a is bigger 
than 0.94849 the initial path is approximately along the line x = + 1 in the opposite 
direction to the nearest saddle point. Hence (1 + e, 1) is a good starting point to 
test the algorithm. Results from saddle point runs which started from (1 - 10 -12, 
1) are given in Table 4. The convergence parameter  was set to 10 -5. Some runs 
converged to the saddle point at (1, 0) others to ( -1 ,  0) and one case did not 
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Table 4. Values of  parameters when the modulus of  the first derivative vector 
of the Cerjan-Miller function has reached 10 -5, in a saddle point run starting 
from the point (1-10 -12, 1) using the adapted Snyman method with different 
initial time steps. The case for an initial time step of  0.05 diverged 

Initial A T Steps Final A T Final point 

0.005 157 0.93 ( -1 ,  0) 
0.05 300+ 0.05 - ( - 1 ,  -co) 
0.5 87 0.65 (1, 0) 
5.0 60 1.30 ( -1 ,  0) 

50.0 60 0.40 ( -1 ,  0) 

converge. Again the most efficient run showed erratic behaviour. In each case 
the direction of the path was initially away from the nearest saddle point and 
the algorithm found it difficult to find a path which lead away from the line x = 1. 
Once such a path was found convergence to ( - 1 ,  0) or (1, 0) was obtained. No 
run converged to the minimum. The paths of  runs with initial time steps of  0.5 
and 50 are given in Fig. 3a, b respectively. In Fig. 3a it can be seen that the paths 
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Fig. 3. a The paths on surface VCM t o  the saddle point (1, 0) from the starting point (1-10 12, 1) with 
initial time step of 0.5. b Erratic paths on surface VCM to the saddle point ( -1 ,  0) from the starting 
point (1-10 -12, 1) with initial time step of 50 
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Table 5. Values of  parameters when the modulus of the first derivative vector 
of the Cerjan-Miller function has reached 10 -5, in a saddle point run starting 
from the point (10 -5, 10 -5) using the adapted Snyman method with different 
initial time steps 
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Initial AT Steps Final AT Final point 

0.005 149 1.11 (1, O) 
0.05 170 0.66 ( -1 ,  O) 
0.5 126 0.65 ( -1 ,  O) 
5.0 42 0.65 ( -1 ,  0) 

50.0 61 0.42 ( -1 ,  0) 

are diverted away from (0,0) by the topology of the image surface near 
(0, 0.645497) where the Hessian of VcM has both eigenvalues equal to 1. This 
point behaves like a saddle point on the image surface. 

A more realistic starting point in reaction surface studies is one which is close 
to a minimum of a potential surface. Results are given for runs starting from the 
point (10 5, 10-5) in Table 5. Each run converged to a saddle point. The runs 
which started with small enough time steps to allow stable paths to be found, 
proceeded slowly up the y-axis until they came near to the point (0, 0.645497), 
where the Hessian of the function VCM has both eigenvalues equal to 1, and then 
left the y-axis and, provided that the time step remained small enough, proceeded 
slowly to the region whose topology was influenced by the point (• 0.94849), 
where the Hessian has both eigenvalues equal to 0.117089, and then proceeded 
to (+ 1, 0). The shape of the image function near these points where the eigenvalues 
are equal caused the time step to be reduced and changed the general direction 
of the paths. This is shown in Fig. 4a which illustrates the paths for an initial 
time step of 0.5. Figure 4b shows the most efficient saddle point run; that which 
started with a time step of 5. Notice that paths from (0, 0) along the x-axis to 
(• 0) were not taken. This is because the point (• 0) on the x-axis 

Table 6. Values of parameters when the modulus of the 
first derivative vector of the Cerjan-Miller function has 
reached 10 -5, in a saddle point run starting from the 
point (10 -5, 10 -5) using the adapted Snyman method 
with different initial time steps accelerated by Newton's 
method whenever the Hessian has one positive and one 
negative eigenvalue and the modulus of the first deriva- 
tive vector is below 10 1 

Initial AT Steps Final point 

0.005 143 (1, 0) 
0.05 104 (-1, 0) 
0.5 47 (-1, 0) 
5.O 11 (-1,0) 

50.0 5 (1, 0) 
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Fig. 4. a The paths on surface VCM to the saddle point (-1, 0) from the starting point (10 -5, 10 5) 
with initial time step of 0.5. Broken lines show contours at intervals of 0.05. b Erratic paths on surface 
VcM to the saddle point (-1, 0) from the starting point (10 s, 10-5) with initial time step of 5. Broken 
lines show contours at intervals of 0.05 

behaves like a saddle point  on the image surface (the Hessian o f  VcM has both 
eigenvalues equal to 0.740208 at this point).  

The c o m m o n  message o f  all of  these results is that  Snyman 's  minimisat ion 
algorithm started with a large initial time step is quick to find a region near a 
min imum point  but is slower at converging to it. This is seen to be more  true for 
the saddle point  runs and is due to the fact that  the image surface of  the 
Cerjan-Miller  surface is very flat near its minima at (+1, 0). So far this paper  has 
demonst ra ted  a new method  for finding saddle points that is robust  and can 
distinguish intrinsically between different kinds o f  critical points. To create a 
more  efficient algorithm for  finding saddle points one should combine  the quick- 
ness o f  this method with a large intial time step for getting close to the required 
stat ionary point  and the good  merits of  another  method which converges rapidly 
to a stationary point  when started close enough to it. To demonstrate  the power  
o f  such a composi te  algori thm in a simple example the calculations in Table 5 
were repeated with the modification that Newton ' s  method would  be used 
whenever  the Hessian o f  VcM had one positive and one negative eigenvalue and 
the modulus  o f  g '  was less than 10 1 and only in these circumstances.  The results 
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are given in Table 6 and show that a much faster algorithm is obtained which is 
very efficient if the initial time step is large. 

As a final comment, a unique path which leads from a minimum to a saddle 
point may be defined as one for which the principal velocities of the particle, 
corresponding to all of the eigenvalues of the Hessian matrix except the smallest, 
are zero. This path, which may be approximated by using a very small time step 
in the adapted method and starting the calculation as close as possible to a 
minimum, corresponds to the reaction path [14]. The actual path obtained in 
this manner would oscillate about the true reaction path; the amplitude depending 
upon the time step. This method in principle allows a reaction path calculation 
to be started from a minimum, but would require a very large number of iterations 
in view of  the small time step required to ensure that the oscillation amplitude 
is small enough. 
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